Status of SPARC

Bob Mumgaard

ARPA-e fusion summit Boston
June 15<sup>th</sup> 2023



#### Status of CFS



- Funded to get to fusion energy as fast as possible
- "Fusion systems company" designed to deliver fusion power plants at scale
- In the last year, CFS has:
  - Grown from approximately 300 employees to more than 500 employees
  - Opened Devens campus with CFS HQ and SPARC
- Company includes a diversity of backgrounds



## CFS Roadmap to Commercial Fusion Energy



Building on tokamak physics demonstrated in machines around the world

#### **COMPLETED:**

Demonstrate groundbreaking HTS magnets

## CONSTRUCTION UNDERWAY for 2025 COMPLETION:

SPARC Q>1 Achieve net fusion energy

#### **EARLY 2030s:**

ARC deployed ~400 MWe







Net fusion energy in a system that scales to a commercial plant



Carbon-free commercial power on the grid

#### SPARC Goals



- Q>1 (L-mode first campaign)
- Q>10 (H-mode ~3<sup>rd</sup> campaign)
  - Not "Q DT equivalent"—it will actually make and measure fusion and heating power
- P<sub>fusion</sub> of 100 MW for 10 seconds
- Demonstrate plasma power exhaust at reactor relevant conditions
- Close ARC physics gaps
- Show CFS can execute a fully integrated fusion system at speed, cost, and scale



#### **SPARC Technical Details**



- Fully D-T capable
- ICRF heated up to 24MW
- Tungsten walls
- Advanced divertor
- Flexible actuators





| SPARC Primary Reference Discharge |      |                                  |
|-----------------------------------|------|----------------------------------|
| R                                 | 1.85 | m                                |
| а                                 | 0.57 | m                                |
| B <sub>0</sub>                    | 12.2 | Т                                |
| I <sub>p</sub>                    | 8.7  | MA                               |
| q*                                | 3.05 | $(q_{95} = 3.4)$                 |
| $\kappa_{sep}$                    | 1.98 |                                  |
| <t<sub>e&gt;</t<sub>              | 7.33 | keV                              |
| <n<sub>e&gt;</n<sub>              | 3.13 | 10 <sup>20</sup> m <sup>-3</sup> |
| $	au_{E}$                         | 0.77 | S                                |
| f <sub>g</sub>                    | 0.37 |                                  |
| P <sub>ohmic</sub>                | 1.7  | MW                               |
| P <sub>rf,coupled,operating</sub> | 11.1 | MW                               |
| P <sub>fus</sub>                  | 141  | MW                               |
| Q                                 | 11.0 |                                  |

#### SPARC Places ARC in Context



- Most SPARC subsystems are:
  - at nearly full scale
  - delivered commercially with a supply chain that can scale
- Show techno-economic pathway
  - Receipts for costs
- The plant efficiencies needed for a power plant
  - If SPARC had a BOP and blanket it would be ~+30 MW electric
- Blanket, materials, and tritium processing done in parallel
  - Separable system problems



## SPARC Physics Basis Mature and Published



- Peer-reviewed assumptions
- Based on tokamak database
- Validated by simulations
- Will be used to close remaining tokamak gaps at power plant relevant conditions







#### SPARC Simulated with Best Tools



- Using first-principle simulations
  - Often supported by INFUSE grants
  - Core performance similar to empirical databases Q~10
- Divertor simulations used to design





Rodriguez-Fernandez, P., Howard, N., Greenwald, M., Creely, A., Hughes, J., Wright, J., . . . Sciortino, F. (2020). Predictions of core plasma performance for the SPARC tokamak. Journal of Plasma Physics, 86(5), 865860503. doi:10.1017/S0022377820001075

Hughes, J., Howard, N., Rodriguez-Fernandez, P., Creely, A., Kuang, A., Snyder, P., . . . Greenwald, M. (2020). Projections of H-mode access and edge pedestal in the SPARC tokamak. Journal of Plasma Physics, 86(5), 865860504. doi:10.1017/S0022377820001300

### SPARC Magnet Development Completed



#### Non-insulated TF:

- Demonstrated at 20T and scale of SPARC with ~identical winding pack
- Showed high stability and novel operation predicted by simulation
- Purposefully pushed to destruction to validate models – they agree

#### Insulated CS+PF:

- Low-AC loss 50kA 20T cable-based
- Demonstrated at loads and strains of a high-field tokamak
- Quench detection demonstrated
- Now fabricating qualification coils





## SPARC Magnet Manufacturing Ramping Up



- All HTS ordered, 40% in warehouse
- TF now in production
  - 3<sup>rd</sup> generation automated production equipment qualified
  - First magnet by end of 2023
- CS+PF entering production soon
  - Automated cabling line coming online for ~20km of cables in SPARC
  - Winding machines being qualified
  - First magnet by end of 2023
- Each magnet tested at current and temperature prior to delivery







## SPARC Design Nearing Completion



- Prototypes are continuing to provide input into design details
- Building and Plant are at final drawings
- Tokamak designs closing soon
- Design lessons learned will roll into ARC design







#### SPARC Procurement ~60% Placed



- Long-lead procurements are into fabrication
  - Magnet components
  - Vacuum vessel
  - Cryostat
  - 20K Cryoplant
  - Tritium handling equipment
  - Motor-generator
  - Power supplies
  - Plasma facing materials
- Components arriving starting in Fall 2023 and throughout 2024









### SPARC Construction ~80% Complete



- Buildings erected over 2 years
- First fusion supporting components being readied for installation now
- Construction workforce rolls into SPARC assembly tasks



# SPARC Construction ~80% Complete



**CFS HQ** 

Diagnostics Building

Tokamak Building

RF and \_\_ Assembly Building



Magnet Factory

UtilityBuilding

PowerBuilding

Cooling Water Building

#### SPARC Path to Completion



- Assembly starts in 2023 and completes in 2025
- First plasma in late 2025 or early 2026
- Campaign 1 will include tritium and Q>1
- Then campaigns to fully exploit the machine for ARC learning
- We are always looking for ways to accelerate



## SPARC Community Engagement Has Been Positive



- Dialogue with community started
   ~1 year before any commitment
  - Only go somewhere where it is wanted
  - Community is excited about fusion and what we're doing
- Environmental permits in hand
  - Environmental baseline monitoring underway
- Radiological license is defined
  - First part of application going in this summer





## SPARC Will Be A Key Scientific Tool





- Will access key parameters never seen before
  - Burning, stationary, plasmas
  - Fusion neutron fluxes
  - Particle and heat fluxes
  - Fields and densities outside any other tokamak
- Can be upgraded
  - Port plugs are replaceable for new actuators and diagnostics



#### SPARC Built on Collaboration

- Plan to contribute to plasma physics databases
- CFS already contributing to Open Source fusion codes
- Plan to collaborate on key scientific issues
  - MIT already deeply involved
  - Many other institutions involved
- A new platform for Public Private Partnerships



































## ARC Up Next

- ARC design starting in earnest
- Minimize the time between discovery on SPARC and implementation on ARC
- Sub-system R&D at a small level now but ramping up
- Searching for a site for the first ARC
- Goal is to roll into ARC as soon as possible as SPARC comes online











# Moving Fast



